Menoufiya University
Faculty of Engineering Shebin El-Kom
Civil Engineering Department

Diploma Exam 13 / 01 / 2018
Hydraulic structures (CVE552)
Time allowed 3 hrs
Max. Degree : 100
Answer the following questions. Any missing data can be reasonably assumed. Illustrates you answer with neat sketches , answers should be organized, concise and readable.

Question (1)

(35 MARKS)
An intersection between a canal and a road occur at a certain location at which the canal cross section is as shown below in figure, while the road intersected with the canal was first class road with 12.00 m width, it is required to design the suitable bridge at this crossing if:

The discharge through the canal was $100 \mathrm{~m}^{3} / \mathrm{sec}$.
Live load is lorry system of 60 ton.
Uniform distributed load $=500 \mathrm{~kg} / \mathrm{m}^{2}$.
The soil at the crossing site is found to be silty sand with max allowable bearing capacity of $12.50 \mathrm{t} / \mathrm{m}^{2}$.
(20.75)

Cross section of the canal
It's required to:
A. Fix the number of vents and the span of each vent
(10marks)
B. Check the heading up, and water way (10 marks)
C. Draw the different elements of the bridge (10 marks)
D. Draw necessary views of the bridge

Question (2)

(35 MARKS)
For the shown drain cross section, it is required to construct a R.S.J. bridge on screw piles using the following data:

Roadway over bridge $=6.00 \mathrm{~m}$, two foot path each $=1.00 \mathrm{~m}$, moving load $=20$ ton lorry, intensity of uniformly distributed $L . L=600 \mathrm{~kg} / \mathrm{m}^{2}$, maximum span of girders between screw piles $=6.00 \mathrm{~m}$, impact coefficient $=20 \%$, floor consists of wearing planks $5 \times 25 \mathrm{~cm}$, timber joists $25 \times 25 \mathrm{~cm}$, diameter of steel pipe $=30 \mathrm{~cm}$, diameter of disc of screw pile $=110 \mathrm{~cm}$. Materials to be used:

For timber: allowable bearing stresses $=80 \mathrm{~kg} / \mathrm{cm}^{2}$, allowable shear stresses $=16 \mathrm{~kg} / \mathrm{cm}^{2}$.
For steel: allowable bending stresses $=1200 \mathrm{~kg} / \mathrm{cm}^{2}$, allowable shear stresses $=840 \mathrm{~kg} / \mathrm{cm}^{2}$.

Question (3)
(30 MARKS)
For an intermediate regulator constructed on the main canal having the following data:
U.S of regulator
H.W.L
L.W.L
(17.85)
(17.70)
(14.00)
16.0 m

3:2
Side slope
D.S of regulator
(17.20)
(16.25)
(13.20)
16.0 m 2:1
A. Make hydraulic design of regulator
B. Design the floor of the regulator using bligh theory $\left(c_{B}=15, c_{S}=8\right)$
C. Draw and calculate the case of loading to check the stability of the pier ($\mathrm{DL}=3$ ton/girder \& LL = ton/girder) (10 marks)
D. Design the gate thickness of the regulator (5 marks)

This exam measures the following /LOs											
Question	Q1	Q2	Q3	Q1	Q2	Q3	Q1	Q2	Q3		
	a2			b5	b6	b12	c9	c11	C4		
	Knowledge \& Understanding Skills			Intellectual Skills			Professional Skills				

